

ZIMBABWE EZEKIEL GUTI UNIVERSITY

FACULTY OF EDUCATION GOVERNANCE, THEOLOGY AND LEADERSHIP

DEPARTMENT OF CURRICULUM AND EDUCATIONAL PHILOSOPHY

EXAMINATION PAPER

MODULE CODE

MODULE TITLE : RESEARCH METHODS AND STATISTICS

: EPD124

SPECIAL REQUIREMENTS

: CALCULATOR AND FORMULA SHEET

DURATION

:3 HOURS

LEVEL

: 1.2

DATE

. 13 JUN 2024

INSTRUCTIONS TO CANDIDATES:

- 1. Answer any THREE questions only, but do not answer more than two questions from one section.
- 2. Each question carries 100 marks.
- 3. Show all working.
- 4. Start each answer on a new page of your answer booklet.
- 5. This paper consists of five (5) pages.

SECTION A: RESEARCH METHODS

- 1. Discuss how you would employ any two non-probability sampling techniques to a research study of your choice. [100]
- 2. Assess the claim that funding is the main factor which influences the researcher's choice of a research topic. [100]
- 3. Examine the role of research in education. [100]

SECTION B: STATISTICS

Question 4

- a. Define the concept of hypothesis [3]
- b. Distinguish between the True Experimental Design and Ex Post Facto design. [4]
- c. State any **two** measures of dispersion. [4]
- d. State any two characteristics of probability sampling techniques. [4]
- e. **Table 1** shows the scores for a round of golf for 18 club members.

Table 1

Score	66	67	68	69	70	71	72	73
Frequency	2	1	2	3	4	1	2	3

- Find the mean of the scores. [4]
- ii. Find the median of the scores. [4]
- iii. Find the mode of the scores. [2]
- iv. Compute the inclusive range of the scores. [2]
- f. **Table 2** shows the marks obtained by 10 students in two tests.

Student	Α	В	С	D	E	F	G	Н	I	J
Test 1	80	48	60	47	73	91	40	62	52	58
Test 2	52	76	60	75	45	45	77	63	79	61

i. Compute the variance of Test 1 scores. [10]

- ii. Compute the standard deviation of Test 2 scores. [12]
- iii. Find the z score of Student D's Test 1 score. [6]
- iv. Compute the Spearman Rank Order Correlation Coefficient of the distribution.[40]
- v. Comment on the strength of the correlation coefficient. [5]

Question 5

a. A researcher wanted to establish if there was any significant difference in performance in the performance of 10 students in English and Shona. She presented the results as shown in **Table 1**.

Table 1

Student	A	В	C	D	E	F	G	Н	I	J
English	60	58	70	32	40	57	65	30	70	62
Shona	72	65	80	56	40	70	70	54	75	70

- i. Calculate the mean of English scores. [3]
- ii. What is the modal score of the Shona scores? [2]
- iii. What is the median of the English scores. [3]
- iv. Calculate the variance of the English scores. [10]
- v. Compute the standard deviation of the English scores. [6]
- vi. Given that the standard deviation of Shona scores is 11.9, in which subject did student D perform better and why? [6]

b. Ten students wrote two tests and obtained the following marks:

Student	Α	В	С	D	E	F	G	Н	1	J
Test 1	25	38	35	30	20	30	40	25	35	25
Test 2	30	46	50	48	26	36	40	31	40	32

- i. Compute Pearson's Product Moment Correction Coefficient of the distribution and comment on its strength. [35]
- ii. Compute Spearman Rank Order Correlation Coefficient of the distribution and comment on its strength. [35]

Question 6

- a. Distinguish between:
- i. control group and experimental group. [3]
- ii. ratio scale and interval scale. [3]
- iii. random sampling and systematic random sampling. [3]
- iv. deductive approach and inductive approach. [3]
- b. What is the strength of a correlation coefficient of 1.0 [3]
- c. State the strength of a correlation coefficient of -0.67 [3]
- d. State any three characteristics of a normal distribution curve. [3]
- e. State any **two** strengths of the mean. [2]
- f. Explain the term Hawthorne Effect. [5]

g. Table 1 shows the marks, class averages and standard deviations for one student in four subject areas.

Table 1

Subject	Mark	Class mean	Standard deviation
English	65	55	10
Shona	70	54	12
Maths	60	44	8
Science	75	85	10

Using appropriate statistical techniques show in which subject the student's performance was

- i. Best [6]
- ii. Worst [6]
- h. Table 2 shows the performance of 10 learners in Accounting and Economics.

Learner	Α	В	С	D	E	F	G	Н	I	J
Accounting	57	78	84	52	92	62	50	73	76	55
Economics	56	73	88	55	80	66	53	75	79	58

- i. Find the standard deviation of the Accounting scores. [12]
- ii. Compute the z score for Learner A's Accounting score. [3]
- iii. Compute the Pearson Product Moment Correlation Coefficient of the distribution. [40]
- iv. Comment on the strength of the correlation coefficient. [5]

THE END

EPR 101 LIST OF FORMULA

Arithmetic Mean

$$\bar{x} = \frac{\sum x}{n}$$

Mean Deviation

$$MD = \frac{\sum (x - \overline{x})}{n}$$

Variance

$$S^2 = \frac{\sum (x - \overline{x})^2}{n}$$

Standard Deviation

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n}}$$

Z Score

$$Z = \frac{x - \overline{x}}{s}$$

Spearman Rank Order Correlation Coefficient (rho)

$$rho = 1 - \frac{6 \sum d^2}{n(n^2-1)}$$

Pearson's Product Moment Correlation Coefficient, (r)

$$r = \frac{\sum (xy) - \frac{(\sum x) (\sum y)}{n}}{\sqrt{\left(\sum (x^2) - \frac{(\sum x)^2}{n}\right) \left(\sum (y^2) - \frac{(\sum y)^2}{n}\right)}}$$